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FOREWORD

The present report is one of a series of three reports
describing a new computer program which predicts turbulent
boundary-layer behavior for a condition involving both heat
transfer and pressure gradient. Part I serves as a summary
report and describes the general analysis which is utilized in
the numerical calculations scheme. 1In Part II, the requisite
low speed formulation consisting of a constant property flow
with combined pressure gradient and mass transfer is described.
Part III describes the numerical and computational procedures
involved and serves as a computer program manual.

The titles in the series are:

PART I - Summary Report ~ "Calculation of Turbulent Boundary
Layers with Heat Transfer and Pressure Gradient
Utilizing a Compressibility Transformation," by
C. Economos and J. Boccio.

PART II - "Constant Property Turbulent Boundary-Layer Flow
with Simultaneous Mass Transfer and Pressure
Gradient,"” by J. Boccio and C. Economos.

PART III - "Computer Program Manual," by J. Schneider and
J. Boccio.

This investigation was conducted for the Langley Research
Center, National Aeronautics and Space Administration, under
Contract No. NAS1-9624, with Mr. Kazimierz Czarnecki as the
NASA Technical Monitor.

The contractor's report number is GASL TR-748.
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SUMMARY

An analysis of the incompressible turbulent boundary layer,
developing under the combined effects of mass transfer and
pressure gradient, is presented in this paper. A strip-integral
method is employed whereby two of the three govérning equations
are obtained by integrating the combined momentum and continuity
equation to 50% and 100%, respectively, of the boundary-layer
height. The latter equation is the usual momentum-integral
equation; the former equation requires specification of shear
at the point 7=m* = 0.5. Accordingly, Clauser's equilibrium
eddy-viscosity law is assumed valid at this point. The third
and final eguation is obtained by specifying that Stevenson's
velocity profiles apply throughout the domain of interest, from
which a skin-friction law can be derived.

Comparisons of the numerical results with the experiments

of McQuaid, which include combined effects of variable pressure
gradient and mass transfer, show good agreement.
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CALCULATION OF TURBULENT BOUNDARY LAYERS WITH
HEAT TRANSFER AND PRESSURE GRADIENT UTILIZING A
COMPRESSIBILITY TRANSFORMAT ION

PART II -~ CONSTANT PROPERTY TURBULENT BOUNDARY -
LAYER FLOW WITH SIMULTANEOUS MASS TRANSFER AND -
PRESSURE GRADIENT

By J. Boccio and C. EconomoOs
General Applied Science Laboratories, Inc.

INTRODUCTION

In recent years there has been an increasingly greater
interest in turbulent boundary layers. On one hand, continuing
research has been aimed toward finding an understanding of tur-
bulent shear flows of which the boundary layer is probably the
most interesting example. On the other hand, an insistent demand
still exists for reliable prediction methods to calculate stream-
wise development of gross properties of the boundary layer as
well as its mean velocity and shear-stress distribution.

The serious interest in turbulent boundary layers has been
evidenced by the fact that relatively large symposiums were
dedicated to the subject. 1In 1968, two meetings were held - both
of which served largely pragmatic interests. One held at Stanford
University (Reference 1) dealt with the study of incompressible
turbulent boundary layers, while the study of its compressible
counterpart was the primary concern at the NASA sponsored meeting
held at Langley Field, Virginia (Reference 2). The 1968 Stanford
Conference revealed many interesting aspects of the technical
problem associated with the study of incompressible turbulent
flows over impermeable surfaces subjected to both zero and non-
zera pressure gradients. One outcome was the fact that some
integral methods, specifically the dissipation~-integral method
of Alber (Reference 3) and the strip-integral method of Moses
(Reference 4) were just as successful in predicting the mandatory
test cases posed as the more elaborate differential or mean-~field

methods of Mellor and Herring (Reference 5), Cebeci and Smith
(Reference 6) and Beckwith and Bushnell (Reference 7).



At the Langley conference, the published theoretical pre-
dictions by Economos (Reference 8) dealing with the study of
compressible turbulent boundary layers over flat plates with
mass addition and, more recently, the theoretical predictions
made by Economos and Boccio (Reference 9) that treat the problem
of compressible boundary-layer development with pressure gradient
and heat transfer but no mass-transfer effects by utilizing a
Coles'-type (Reference 10) compressibility transformation has
revived, to some extent, the use of such types of transformations
in the study of turbulent boundary-layer flows.

As discussed in Part I of this report, reexamination of this
compressibility transformation in an effort to improve velocity
profile representation, has led to the development of a somewhat
more general form of transformation. This new form relates the
compressible boundary-layer flow under the influence of pressure
gradient and heat transfer to an incompressible one in which
pressure gradient and mass transfer occur simultaneously. Thus,
in order to achieve the objectives of this contract, the first
step was development of a formulation which described the latter
flow. This repoit will describe such a formulation.

An integral method of approach has been chosen because of
its virtue of incorporating these effects on the turbulence
structure in an implicit and global manner. Thus, the avoidance
of local turbulence assumptions that are required in field
methods, the fact that there is a dearth of corroborative experi-
mental information which relates the dependence of mass transfer
on eddy viscosity, and the simplicity of the method, all go into
making the integral approach an attractive calculation tool for
this endeavor.

Accordingly, at the outset, a two-parameter profile repre-
sentation is deemed necessary. And because of its firmer theo-
retical basis, the Stevenson defect law (Reference 11) has been
chosen over those postulated by Mickley and Smith (Reference 12)

and McQuaid (Reference 13). The analysis could have used the
defect law posed by Simpson (Reference 14) which is considered
to be a logical extension to Coles "law of the wall - law of the

wake formulation" to account for the non-constancy of the

von Karman parameter, ky o which occurs at lower momentum thick-
ness Reynolds number (< 6000), but its added complication and only
slight improvement did not mandate its use. From the defect



velocity representation emerges a skin-friction law from which

a differential equation can be obtained relating the requisite
three dependent variables that define the system; namely, the
Coles wake parameter, 7 , the wall skin-friction parameter, o,
and the Reynolds number based upon boundary-layer height, R .
Consequently, in addition to this equation and the usual momen-
tum-integral equation, a third differential equation is required
to close the system. In this context, several approaches are
available based upon their success reported at the 1968 Stanford
conference. For example, higher moment equations such as the
moment of momentum equation as Alber uses for the non-transpired
problem can be utilized. And indeed, this has been the case in
the method of Lubard and Fernandez (Reference 15) who have
treated the identical problem as that presented herein. However,
to implement this method they must extend the procedure of Alber
by not only uncoupling the attendant dissipation integral from
the local pressure gradient, but they must also decouple its
dependence from the mass transfer rate. Consequently, in addi-
tion to using Alber's empirical curve fit which relates the
Clauser shape parameter with pressure gradient parameter and
which they have to generalize to account for mass transfer,

they must further assume special forms for the variation of mass
transfer rate to associate with an "equilibrium" flow in order
to close their system. Although the numerical examples cited
are found to be weakly dependent upon which variation (three in
all) is used and although they present rather good agreement
with experiments, it is felt that use of such an assumption
could be restrictive insofar as incorporating it into other
types of pressure gradient and mass transfer rate distributions.

Accordingly, the approach taken herein to obtain the remain-
ing governing equation and which is felt to be one degree less
empirical with regard to its extension to problems involving
transpiration is the strip-integral method of Moses - a method
which has also enjoyed reasonable success at the Stanford con-
ference. This additional equation is obtained by integrating
the momentum equation up to 50% of the boundary-layer height,
at which point the shear stress is a priori assumed to be that
postulated by Clauser (Reference 16) for equilibrium flows.

Thus, an assumption based upon equilibrium flows extended to
account for mass transfer and arbitrary pressure gradient is
required here as well as in the method of Reference 15. However,
this assumption is only required at one point in the boundary
layer and not across the entire boundary layer as is required



in the aforementioned reference. Also, no empirical curve fit
of non-transpired boundary-layer data a priori extended to the
transpired problem need be made.

In the following sections, the integral method is developed
for the two-dimensional case and for the case where the injectant
is the same fluid as the external stream. Numerical results are
obtained for three specific problems, namely, those termed by
McQuaid (Reference 17) as pressure distribution I, II, III.
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SYMBOLS
elements of ordinary differential equations,
c.f. Appendix and Eq. (38)
functional form, c.f. Eg. (24)
(1/4)v
w
column vector relating to right-hand-side of the system
of ordinary differential equations c.f. Appendix and
Equation (38)
local skin friction coefficient, Z;W/ﬁeﬁz
= 1,2,3 functional forms, c.f., Egs.(A-8),(a-9),(A-10)
functional form, c.f. Eqg. (23)
form factor
definite integrals described by Eg. (A-4)
functional form, c.f. Eg. (26)
- (l/kl)
constant, 0.4115
constant, 4.9
external pressure, lb/ft®
i=1,...,5 functional forms, c.f. Egq. (A-5)
Reynolds number based upon boundary-layer height,

(p ue'o &6/u)

,

Reynolds number based upon local value of v
(p U, o y/u) '

’

generalized velocity function, c.f. Eg. (8)
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u_/u
e e,0

- - - =%
shear velocities, (7/0)° , (Tw/p)é , respectively, ft/sec

velocities respectively along and normal to body, ft/sec
» * - - ; - - t .
velocity ratios u/u"_w Vw/urw » respectively

v /u
w %e, 0

difference between outer edge value and local value
of Coles wake function, c.f. Eq. (19)

Coles wake function

=1,2,3 various curve fits to Coles wake function,
c.f. Eq. (21)

space coordinates respectively along and normal to body
puTw y/p

- .
value of y at laminar sub-layer height

experimental constant (0.018) in the description of
eddy viscosity c.f. Egq. (6)

boundary layer height, ft

displacement thickness, ft

eddy viscosity, ft®/sec

viscosity ratio, PE/u

y/8

a particular value of 5 taken within to be equal to 0.5
momentum thickness, ft

definite integrals, c.f. Eg. (31), (30), respectively



u molecular viscosity, lb sec/ft*

v kinematic viscosity, ft®/sec

o Coles wake parameter

p density, lb sec®/ft*

T 6/5

T shear stress, 1lb/ft®

) skin-friction parameter, Ge/arw

X Reynolds number defined as Ge,o(g-io)/g

s3 . B%/8

Subscripts

( )e pertains to local condition at edge of boundary layer

( )o pertains to initial conditions

( )S pertains to laminar sub-layer height

( )w pertains to condition at wall

Superscripts

™) normalization with respect to_external value unless
otherwise noted, i.e., u = u/u

()* designates properties at n*

()M

designates 1ntegratlon performed between
the couple (0,1n*)

( )(l) designates integration performed between
couple (0,1)

() a/dx



ANALYSIS

A. Basic Equations

The differential equations describing the mean flow
of an incompressible turbulent boundary layer for a two-
dimensional flow field are taken to be

Continuity:

ou 7

x Teg 0 0 (1)
Momentum:

— —_ dp o

— o1 du e o7 .

TPy & T W @)
Shear Stress:

— — du - ==, 37

= —_— - T'F'= +06) —

External Flow:

dﬁe dﬁé
dx = -oéue ax ) (4)

The developing flow-field is subject to the boundary conditions

=20 v =7 (%) aty =0

U = U_{X) at y - o

A set of ordinary differential equations can be obtained
fram the boundary-layer equations (1) and (2) by integrating
in ¥ yielding after some manipulations
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a ~ 4 Ywl .4 N "~ -

_-i-‘f u? dn - u* ‘a‘)-i udn-—-§-—+ (LnR)[J' u®dn - uf udn}
a n* = 1 1

* 3% ({:n .ue){fo 2u%dan - u j'o udn - n*} = & {r* ; 7 }

(5)

where the superscript (~) denotes..unless otherwise noted, that
the quantity has been ratioced with the local edge velocity, u .
In addition, the following definitions are required, namely:

*

X1

=3, (k%) /B

S1 o w31
0 Wi ] i
[+ c [«3 I <
N
NN O
— [«
1
® §\~ od]
° <
o

N

1
NI
VI

c

( )_ = initial quantities

properties at ﬁ a n*

i

()
()
()

external conditions.

wall conditions

* To be consistant with Parts I and III of this contractual
requirement, superscript ( ~) connotes propertles in the
incompressible plane.



Any number of differential equations can be obtained by eval-
uating Equation (5) at different values of nm*. Evaluation at

n* = 1 results in the usual momentum-integral equation.
Accordingly, with two unknown parameters assumed for the velocity
profile representation (which is to be discussed later), only one
additional equation and choice of f* is required. Values of 7H*
between 0.2 to 0.5 have been tried by Moses and by Baronti
(Reference 18) with little effect on the final results. Thus, the
arguments posed by these two authors are extended here by consider-
ing as the second governing equation that which results by letting
n* = 0.5, at which point Clauser's eddy viscosity law is also
assumed to hold, i.e.

e* = Bu_6* = 0.018 u_ b6* (6)

Considering the molecular viscosity negligible at ﬁ* = 0.5
then the shear stress becomes

T* = (p€ ‘—)* =80 0‘%)* ' (7)

where the normalized displacement thickness is
Q=258*/8
B. Velocity Profile Representation

The turbulent boundary layer is generally assumed to consist
of three distinct flow regions: (1) the viscous sublayer, (2) the
turbulent core, and (3) the wake region. A fourth region termed
as a buffer or blending region which is bracketed by regions (1)
and (2) above must also be considered in the description of a
turbulent boundary layer. However, buffer region expressions are
not as well agreed on and normally any expression for this region
incorporates the sublayer or the sublayer and turbulent core
(Kleinstein, Reference 19).

10



In the viscous sublayer molecular viscosity dominates. In
the buffer region, transition to the fully turbulent part of the
boundary layer takes place and the laminar and turbulent mechanism
appear to be of equal importance. In the turbulent core, molecular
viscosity is assumed to completely lose its significance and the
velocity profile depends only on the turbulence. Beyond the
turbulent core is the wake region which is essentially another
transition region in that the turbulence becomes intermittent and
the flow changes from fully turbulent to the free strean condition.

In incompressible flow over impermeable flat plates, various
"laws" have been used to describe these regions. Regions (1), (2)
and the buffer region, which is not considered any further in this
report, are referred to as the "law of the wall" region. The wake
region, so called because of the flow similarity to that of a
wake propagating into an otherwise undisturbed flow, has been
described by the "law of the wake" devised by Coles (Reference 20).

The extension of these laws to describe the velocity profiles
over permeable bodies are digcussed in this section. The formula-
tior is brief and represents a summary of existing work due to
several contributors; additional discussions on this subject can
be found in Reference 21.

A three-layer model of the boundary layer is considered and
within this framework, the choice of the profiles is believed to

be the best representation available.

A generalized velocity function defined as

v= " aa'/u (8)
is introduced where

W= WA - U6

a, = (?W/E);2

11



Now, in considering the ramifications associated with the
definitions of the laminar sublayer and the law of the wall,
namely, that within these regions the streamwise gradients do
not significantly affect the shear distribution, reguires then
that this generalized velocity function be

U=(2/v)[(l+vu)2 1]  (9)

Furthermore, within the laminar sublayer where it is assumed
that the quantity &€ , i.e., (p€/u) is considered much less than
unity, it follows that the velocity distribution G of the form

+
uv_ = exp (v v ) -1 0<y =y

(10)

where a measure of the laminar sublayer height, ?s, is, as yet,
unknown and where

-t - ~ -
v =2v./u__=v @

w w oTwW w

-+ _ =- _/_ _R 5 _/_
y = Purw y/u = e Mo

-
With regard to the law-of~the-wall region where € 1is

considered to be much larger than unity then

Hdu oo+
€ dy = u_ (11)

Accordingly, by considering the momentum transport theory of
Prandtl with its attendant mixing-length hypothesis, namely that

~+ —+ -+
€ =kju vy (12)

yields, when substituted into the above equation and integrated,

U=k, + (1/k)) ny" vh 2y (13)

12



The constants k., and k, are taken to be those associated with
the zero mass-transfer case. A posteriori justification for
this assumption has been provided by experimental measurements
for the zero pressure-gradient case with mass injection and is
discussed in Reference 21. For pressure-gradient cases its
"justification will be provided by comparisons with the
experiments. '

Finally, by combining Equation (9) with Equation (13) there is
‘obtained the law-of-the-wall equation with transpiration in -
the form

U= (45T -1 = k. + (k) in ¥ s Feyg
w 2 1. S (14)

which is identical to that deduced by Stevenson. To complete
t&e profile formulation within these two regions, the value .of
y _ must be determined. Requiring the veloc¢city to be continuous
at this point requires the equality of Equation (10) and
Equation (14) which is provided if

1+ (3/2) Uyt (L)) 40 F2) = expl (/)T 72 (15)

With the velocity profiles determined within the inner
turbulent region, the variation in the outer region, the
so-called defect law, is readily derivable from a dimensional
similarity argument. Thus, by considering the existence of a
region of common validity between the law-of-the-wall and the
. law-of-the-wake and the fact that the latter law avoids a
direct confrontation with the physical mechanism of shear
turbulence requires the defect law to have the form

—+  —+ -t =t —
f(ue . v, )y - £(T, Ve )= Fl(n) (16)

Identifying the function, f, with the generalized
velocity function, U, then requires that F(5) must be

PO = (2 ) T ) - et ) ) (17)

13



and, by considering the universality of F(7), then its reppe-
sentation can be taken from that which is associated with the
impermeable wall problems. Thus, in the spirit of Coles, F(7)
behaves like

F(n) = (n/k) w(n) - (1/k)) tn 7 (18)

where

W(n) = w(l) - w(n) (19)

i

and w(#) is the so-called Coles wake function. Thus, the defect
law is obtained by equating Equation (17) with Equatlon (18),

thereby yleldlnq tHe general representation within the outer
layer, i.e.,

T %

U = (2/’ )[(1+v u)-1l] =k, + (l/kl)*«n?+ +

(m/%,)w (7)

which further demonstrates the utility of the generalized
velocity function U.

Thus, the velocity profile representation, taken in
concert, is

Inner Region, law-of-the-wall region

et .+ _+ 0 S §
= - 20
UV, = exp (vw v) -1 0 <y < Y, (20a)
2/75 ) Lsa*s] 12.17 = o+ (L/k)4n §F v 7
( YL(+u v = Ky ’"mYy s (20b)

—+
where Y must satisfy the trancendental equation

1+ /2)[k +(l/k )Lny ]=exp[(1/2)v; ?Z ] (20¢)

14



Outer Region, law-of-the~wake region
(/5 ) L+, T 7-10 = (1/%)) 4n F7+ (n/k)w(m)+ ko
- | | " (20d)

.+ . +
'.y;<37+s'6'
various curve fits to the Coles wake function have been

incorporated into the numerical program, namely

w(@ = w (@) = 2(3n-21)

n
!

w (%) W, (7) l-cosm# (21)

w (%) w3(n) =-39”3—125ﬁ4+183ﬁ5-133ﬁ6+38ﬁ7

.However, only the results usiné wl(ﬁ) are presented herein.

A working form of the velocity-profile representation is
obtained from Equation (20d) by normalizing the velocity
component with W, and the physical height with 6 yielding
the following velocity- profile representation, which is con-

.sidered to be more suitable for integration and differentiation.

Thus, the velocity profile is given by

i = 1+A(5,GW)G(1r,77) +B(\7W)G2 (7,7 (22)
where

G(r,m) = LT(MW@H+K 4n 7] | (23)

AT = -(l+¢2\”rw);5'(l/‘¢3) (24)

B(¥) = (1/4) ¥, (25)

J(m = (n/x)) (26)

K = -(1/k)) | | (27)

Note, Equafion (22) is strictly applicable outside the laminar
. sublayer region; thus this region is neglected when this equation

is substituted in the integrals associated with Equation (5). 15
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C. The Skin Friction Law

A direct consequence of Equation (20d) is the skin-friction
law obtained by placing 7 equal to unity at ¥ = §. Slight
manipulations yield

(1+v;¢) N (v /2) [ky+ (1/k)) 4n 3++(n/kl)w(1) ] (28a)

which can be rewritten as

(14579 )7 = 1+(9,5/2) Tky+ (1/ky) tn (RT_ /) + (2n/k;) ) (28D)

with, according to the curve fits of the wake function,
w(l) =2

This equation, which relates the skin--friction parameter, @,

a scaled boundary-layer thickness, K, and the wake parameter,
#, to the independent variable, X, constitutes the remaining
equation of the problem at hand. Implicit in the equation is
the x-wise dependency of ¥  since V& and u_ are considered to
be known functions of X. For later compu%ational convenience
differentiating Equation (28b) with respect to X yields after
considerable manipulations a working differential equation
namely

(AnR) ' (1/kp)+(AnT,) ' (L/ky)+(m) ' (2/%p) +(4ng) ' {=(1/kp) +

+(2/¢ﬁw)[(l¥¢26 -1] -2¢(1+¢ ) %}+(an ) ' { (2/00 )[(1 +

? 7o )%-l]-¢(l+¢ ) %} =0 ' (29)

where
( )' = d/ax
It can easily be shown that in the limit of Vi =0 the above

equation reduces to that for the impermeable Case which
comprises part of the analysis found in Reference 9.



D. Final Working Forms of the Governing Equations

By examining the form.of the velocity profile given by
Equation (22) and the integration required in Equation (5), it
is deemed more convenient in defining integrals of the form

3|

- . _
A" = jo (8-1)af = A, @.9_, 1, 7) (30)
; _ o
Aln) = j‘n (E-1) a7 = A, @, T _,7.7) (31)
(o]

where it can be readily shown that the term multiplying
d/dx (4nR), in the latter equation can be replaced with

Aéﬁ*)+ (2-8*) Al(ﬁ*) + (1-TG*)q*

Now, by considering the functional dependency of these integral
forms on the dependent variables, @, 7, R and their implicit
dependence on the independent variable, ¥, through the possible
streamwise variation of ¥ and T , then the requisite
differentiation of these Yntegra? forms when substituted

back into Equation (5) will, after collecting terms, produce
the result that

(m*)

(&ﬁa)'Ffﬁ*)+ (m) '

+(Ln§)'[Aéﬁ*)+(2—ﬁ*)Aiﬁ*) +
(-5 7] +(4nb ) {12807 + (4-a0) AT 4 (1-gxype] -
CORIRPCNC IV S Y R

2 (4nVy) 'Fy R R T ¢2 =

F

(32)

where vV = vw/u
w e,o

Noting that the auxiliary equation described above will
yield identically the so-called mamentum-integral equation if
the integration is performed up to 7 = 1 {ith G*and 7* equal
to one and zero respectively at this point, then it can be shown,
formally at least, that the last and final governing equation
can be written as

17



1) . 1) . (1)
(Ln('P‘)'F(l)+(fr) Fy (1 )+(LnF)'[A1(, Lt Ay ]
oD aa (D) p (W Ty e, (D
+(LnUe)'[2Aé +34,70 = Fy +(4nV ) 'F,

+@ R+ (1) = 0 (33)

where the superscrlpt (l) indicates that the functions are to
be evaluated at 5 = 1, Also, in terms of the definitions,

A, and A2’ the normalized momentum and displacement thickness
afe respactively

T=9/8=- M 4 M | (34)
0=0%/6 = - Al(l) (35)
| @) )

The nncessary equations tQ ?valu?;e the terms F
F. (M), and the terms A , are given in the
Appendix. Also, in lieu of the above equations, the shear
stress, T*, can now be formally represented by

= BQ(3G/?7) (A (@, %) +2B(¥ )G(m.7) ] (36)

where

(3G/3m)LT (1) +K/7) (37)

Finally, Equation (29), (32),and (33) can be recast into
the form

A, a, A, (Lrig) c,
inR) ! = 3
A2 A5 A8 (4nR) C2 (38)
L]
A3 A6 A9 (m) C3

where the coefficients Ai and Cj are also given in the Appendix.

18



The integration of the system (38) can be readily carried
out by means of a high-speed computer, with the development of
the boundary layer thus being determined once the external
pressure field, -the mass-transfer distribution, and the initial
conditions are prescribed. :

E. Initial and Boundary Conditions

For boundary conditions all that is required is a specifi-
cation of the external and wall velocity distribution and the
unit Reynolds number. The initial conditions which are
necessary in order to numerically integrate the above system
of equations are the values .of @, 7, and R at some initial station,

Xo.

Usually, integration will start at a station where there is
an experimentally determined velocity profile. Then a plot of @
versus Ry can be generated from which R can be ascertained. Also,
by making several judicious guesses on P, a 'log-law', i.e.,
Equation (14) which best describes the data can be ascribed.

The result is a generalized 'Clauser Plot', as shown in Figure 1
from which the desired value of ¢ can be obtained. with ¢ and
R now known, the third parameter, #, is obtained by solving

the skin-friction law, Equation (28b), which is recast

below in a slightly different. form, i.e.,

1

m=(k,/2) [ (14579, ) =119, 5/2) "=k~ (L/x ) Ain (RT_/@) ] (39)

where by definition ﬁ; is unity.

If one wished to initiate the solution at a leading edge,
the assumption implicit in the analysis are that at io=0

@, = 13.55

(1'r)o = 0.6

from which the skin-friction law, yields an expression for
R , namely

1
R = exp{ (0.06073/% ) [(1 +183.6037V ) *~1]-0.6104} (40)
for the leading edge value orice a (vw)o is prescribed.
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RESULTS AND DISCUSSIONS

The numerical results of the analysis of the previous
section have been compared with the experimental data of
McQuaid (Reference 17). 1In the three cases considered, the
pressure gradient and blowing rate were varied simultaneously
but were restricted to air into air injection without heat
transfer. Boundary-layer developments were measured with in-
jection rates (Gw/ﬁ o) between 0 and 0.0008 at freestream
velocities of 50 and’®150 ft/sec. At the outset, it must be
stated that the skin-friction comparison is not made with the
experimental values quoted by McQuaid. It is felt, and as
McQuaid concedes, that considerable errors can accrue if use
is made of the momentum-integral equation to experimentally infer
the wall skin-friction value. Instead,-and as McQuaid suggests,
the skin-friction coefficient used in all the examples cited
is that which has been estimated by means of the Clauser Plot
method previously described in Section E. . In general, the
agreement in all three cases is qguite excellent.

McQuaid Pressure Gradient I. - In this case, the boundary
layer has developed under a mild adverse pressure gradient and
a mild increase in blowing rate. Figure 2 shows the excellent
agreement between the analysis and the skin-friction and
integral data over the entire range. The ability of the
analysis to predict the velocity profiles is also demonstrated
in the next figure. 1In Figure 3, only three profile comparisons
are shown; one at the forward portion of the region of interest,
one in the center, and one at the end of the measurement domain.
Ten such profiles have been measured by McQuaid and all have
been compared with the existing analysis showing similar and
ofttimes better agreement than those presented herein.

McQuaid Pressure Distribution II. - A mild favorable
pressure distribution, together with a decrease in the blowing
rate,gives rise to the experimental data reported by McQuaid for
this test configuration. Again, the agreement of skin friction,
form factor, momentum thickness, and velocity profiles as
portrayed in Figures 4 and 5, is quite good.

McQuaid Pressure Distribution III - In this final case, the
severest pressure gradient is considered. Over a span of approx-
imately 30 inches the external velocity has increased by a
factor of two while the blowing rate has increased three-fold.
Again, the comparisons as exemplified in Figures 6 and 7 show
rather remarkable agreement. Also, as before, all ten profiles
reported have been compared, all showing similar comparative
agreement. 21
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CONCLUSIONS

An integral method has been developed for calculating the
development of an incompressible boundary layer under the
simultaneous influence of both mass transfer and pressure
gradient. No need to generate new empirical constants has been
required; and also there has been no need to utilize curve fits
of non-transpired boundary layer data in the numerical program.
" The numerical program is quite simple and fast, taking approxi-
mately 20 seconds to complete a case during which time ten
theoretical velocity profiles can also be generated. No sub-
stantial effort has been made to compare this analysis with the
integral method of Lubard and Fernandez; suffice .to say that
both methods show similar comparative tendencies. However, it
is felt that the approach present herein is less empirical than
that of Lubard and Fernandez, or stated somewhat differently,
the empiricism required manifests itself only at a discrete:
point of the boundary layer, namely, the assumption that
Clauser's eddy-viscosity law is valid at only one point, namely
at n * = 0.5. Hence, there is no need to assume gross profile
behavior as is required in Reference 15, where

1l. a curve fit of Clauser's equilibrium form factor
with pressure gradient is required.

2. this same curve fit must be extended to include
the transpired probklems, and

3. a need tb define an equilibrium flow with mass
transfer is mandatory.
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APPENDIX A
I. The Profile Parameters Ar, Ay
Considering the velocity profile represented by Equation

(22) and, for convenience rewritten here, i.e.,

4 =1+ A(@,¥ )G(m,n)+B(¥ )G2 7) A-1)

4 = (@, )G(m.m Ve (m.n (A=
where

G(m,7n) = (J(m)W(n)+Klny)

L

-2,
- (LT ) T (/)

b

§l
<
]

B(G&) z (1/4)6w

J(m) = (1/ky) (m)
K= - (l/kl)

W(n) =w(l) - w(F)

and substituting into the definitions for Al,AQ.yields formally
two expressions of the form

A= B (. T )0, (1,7)+B (T )0, (T, 7) (A=2)

n 2~ .~ = — o ~ - 2 —
A, M= 2% @5 Vo, (n ) +2A @7 )BT )0, (1.7)+8% (9 o (1, 7)
(3-3)

where the superscript, (ﬁ) implies the H—dependency of the
functions brought about by the integration interval(0,7n).
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The expressions for the Q's involve integrals in the form

n =y 1P -\d 5= : '
[ w@ ¥ (1nf) ™~ a7 . (A-4)
o

I(n.,p,9q)

where the powers p and g represent integers ranging from 0 to
4, Accordingly it can be shown that

Qq (m,m) = J(m) I(7,1,0) + KI(7n,0,1)

' - 2 - - 2_ ..

Q (m,A) = J (MI(7,2,0)+2J(MKI(H,1,1)+K I(n.0,2)

Q (m.7) = Qz(n.ﬁ) (A~5)
— 3 - 2 - 2 -

Q,(m,n) =J (M)I(n,3,)+37 (M)KI(n,2,1)+33(M)K I(n,1,2)

+K3I(ﬁ,o,3)

Q (T, 7)) —5* (m) I (77',4,O)+4J3 (m)KI ('77,3,0)+6J2 (ﬂ)KZI (7.2,2)
- 3 4
+4J (MK I(7,1,3)+K I(7,0,4)

and specification of a curve fit to the Coles wake function,
i.e.,

2(37° - 27°) (A-6a)

w(n)
or
w(f) = 1 - cos(mn) (A-6Db)

or

5

4 - - -
w(f) =397 - 1257 + 1837° - 1337° + 385’ (A-6C)

is all that is required to evaluate the Q's for any 7.
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I1. Derivatives of the Profile Parameters

Examining the auxiliary equation in the body of the report,
i.e., Equation (5 ) indicates that these profile parameters
must also be differentiated since the term

n* n*

(@/ax) [ . wlar - ala/axn [ aad

can be written as

77* 5 n*
(@/ax) J [(@-1)+ 28-13df - Gr(asax) [ [(§-1)+1lan
(o] o

and since f* is a constant (taken here to be 0.5) then the
original term in the auxiliary equation can be replaced by

(a/ag) AT+ (2-gra/ax) Al(ﬁ*)

Now, considering the functional dependency of the A's on
.7,V and that

Then the above expression when differentiated and common
terms collected can be expressed symbolically as

(d/ax) Az(ﬁ*)+ (Z—ﬁ)*(d/d}'()Al(ﬁ*) -
(1) * () T e () (7)) v (my () (70

—

= ., (n*) _
- (ane) (Fz) (A-7)
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where the expressions for the F's are

F1(ﬁ*)=(dA/d¢)(¢)[2AQ3+2BQ4+(2-ﬁTcl] (A-8)

-

F (n*)=(dA/dG ) (v. ) [2AQ_ +2BQ, + (Z—ﬁ;b ]+
2 w w 3 4 1l

*
(dB/de)(Gw)[ZAQ4+2BQ54%2-ﬁ)Ql] (a-9)

(n*) 2 2
F, = A (dQ3/d1r)+2AB(dQ4/d1!)+B (dQs/d‘n') +

(2-5)1a (aQ, /am) +B (30, /am) ] (A-10)

Note, that for convenience, the indication of dependency of
the various functions on the governing variables has been
dropped here. Furthermore, it can readily be shown that

(dQl/dfr) = (dJ/dfr)I(ﬁ-l,O)=(1/kl)I(7i.l.0)

(dQ,/dm) = (ag/dn) (231 (5,2,0) +2KI (§,1,1) ]

(dQ,/dm) = (dQ,/dm) (A-11)
(dQ,/dam) = (dJ/dw)[3J21(ﬁ,3,0)+6JKI(ﬁ,2,1)+3x21(ﬁ,1,2)J
(dQS/d-rr) = (QJ/dw)[4J3I(ﬁ,4,o)+12J2KI(ﬁ,3,1)+12JK21(5,2,2)

4 ARSI (A, 1,3) )



Likewise the various derivatives of A are

2 2. -k
(@a/dp) = (1/¢) (1+p v

(@a/av.) = -(1/2) (p) (1430 ] "

and for B all that is required is

(dB/de) = (1/4)

(A-12)
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IIT Elements of System (38)

A =l- (LK) +(2/p9 ) L1427 ) =120 (157, ) )

o
i

{1/x,}

g
i

= {2/k,)

_ . " 2o %
c, = -{(Lnue)-(l/kln(tnvw) {(2/g% ) (@57, ) ?-1]

~ =k
P10 ) T}

Note: Since "\"rw = Vw/ﬁe = (v /— ) (u /Ee) = (Vw/ﬁe)
_ (M%)
A2 = Fl

a, = A4 2-) AT+ (1-0)

5
_ (M)
A, = F,
c, = {(LnU ) {[2A2” ) 4 (a-10) A{n*)+(l-ﬁ)*ﬁ*]-F§ﬁ*)}
T %
_ (F*), . w1 . 2
w7 ) (F A N
+(4nv ) ' {F, }+§_ g ‘7 /¢ }}
_ (1)
A3 = 0
_ (1) (1)
A6—A2 +Al
_ (1)
By = F3
cy = - {wnv ) t2a, Paaa, W op, M ivanv ) e, M

L o= =2
@R +H(/RP )
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